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Abstract

In this paper, we present Chameleon—an application controlled dynamic voltage and frequency scaling approach for reduc-
ing energy consumption in mobile processors that see multimedia workloads. Our approach exports the entire responsibility
of power management to the application level. Since multimedia applications impose soft real-time constraints, a key goal of
our approach is to reduce energy consumption of such applications without degrading performance. We propose an operating
system interface that can be used by Chameleon-aware applications to achieve energy savings and demonstrate its effectiveness
for three common applications—a video decoder, a video conferencingtool, and a web browser. We implement our approach in
the Linux kernel running on a Sony Transmeta laptop. Our experiments show that, compared to the traditional system-wide CPU
voltage scaling approaches, our technique can achieve up to34 − 50% energy savings while delivering comparable or better
performance to applications, and Chameleon is also more effective at scheduling a mix of concurrent applications with diverse
energy needs.

1 Introduction

Recent technological advances have led to a proliferation of mobile devices such as laptops, personal digital assistants (PDAs),
and cellular telephones with rich audio, video, and imagingcapabilities. While the processing, storage, and communication
capabilities of these devices have improved as predicted byMoore’s law, these advances have significantly outpaced theim-
provements in battery capabilities. Consequently, energycontinues to be a scarce resource in such devices. The situation is
exacerbated by the resource-hungry nature of multimedia applications—such applications consume energy by accessing,pro-
cessing, and rendering large amounts of multimedia data.

Modern mobile devices attempt to use energy judiciously by incorporating a number of power management features. For
instance, modern processors such as Intel’s XScale and Pentium-M and Transmeta’s Crusoe incorporate dynamic voltage and
frequency scaling (DVFS) capabilities. DVFS enables the CPU speed to be varied dynamically based on the workload and
reduces energy consumption during periods of low utilization [12, 13, 21]. Since multimedia applications impose soft real-
time constraints, voltage and frequency scaling techniques must be carefully designed to prevent the processor slowdown from
interfering with the timeliness constraints of the application.

A number of hardware and software power management techniques have been developed to take advantage of DVFS-capable
processors. For instance, Transmeta’s LongRun is a hardware technique that measures processor utilization at the hardware
level and varies the CPU speed based on the measured system-wide utilization [10]. Software approaches for DVFS have been
implemented either in the operating system or at the application level. Operating system implementations of DVFS techniques
determine a system-wide CPU setting based on the processor demands of the currently active tasks [8, 9, 14, 15]. In this
approach, individual applications do not have any direct control over the CPU power settings. A single system-wide CPU
setting is determined, typically based on the needs of the most resource-hungry application, even when a mix of applications
is executing on the processor. Furthermore, the operating system needs toinfer the processing needs of the applications using
online measurements and can incur estimation errors. Application-level DVFS techniques have been studied in the communities
[5, 16, 17, 19, 29] . These techniques consider a single application such as a video player and grant complete control of the
processor frequency and voltage settings to the application. The power-aware application can choose a voltage and frequency
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setting based on its needs and typically ignores other applications in the system. As a result, the performance of other applications
can be significantly impacted when the settings chosen by thepower-aware application do not satisfy their CPU needs.

A hybrid approach for DVFS was proposed in [22]. In this approach, periodic multimedia applications convey their periods
and the amount of work in each period to the operating system using system calls. The technique integrates DVFS with a real-
time CPU scheduling algorithm such as Earliest Deadline First (EDF) and makes scheduling and voltage scaling decisionsusing
(i) application supplied information and (ii) probabilitydistributions of measured application demands. Thus, while applications
do not directly control their CPU power settings, they provide useful information to the OS kernel, and thereby influencethese
settings.

In this work, we argue that applications know best what theirresource and energy needs are, and consequently, we explorean
approach where applications have complete control over their CPU power settings. Unlike prior approaches, however, weuse OS
mechanisms to isolate applications from one another. Thus,each application can specify its CPU power settings independently
of other applications, and an application is completely isolated from the settings used by other applications. Application-specific
power settings enables a mix of diverse applications to flexibly optimize their energy needs. Our approach resembles the
philosophy of theExokernel, where the OS grants complete control of various resources to the applications and only enforces
protection to prevent applications from harming one another [7].

Our current work differs from past work on DVFS in many different respects.

• Many existing OS-based DVFS approaches specifically assumeperiodic and/or interactive applications and do not work
for other types of applications. Similarly, much of the workon application-based DVFS approaches has only considered
a single application such as a video player. By exporting power management to the application-level, our approach can
be used by any application, regardless of its nature. We demonstrate the benefits of our approach for periodic applications
such as video players and video conferencing as well as aperiodic applications such as web browsers. We are also
developing a power-aware version of an open-source Office application suite.

• Many OS-based DVFS approaches employ a single system-wide setting for all applications. Such an approach can be sub-
optimal when scheduling a mix of applications, since less-resource intensive applications waste energy by using a higher
setting that is necessary, and more-resource intensive applications see degraded performance when a lower setting is used
than is necessary. Our approach uses a different power setting for each application, and we experimentally demonstrate
its flexibility when scheduling a mix of concurrent applications with different resource needs. We note that per-process
power settings are also used in [22], although the approach restricts itself to a mix of periodic applications.

• OS-based approaches can incur estimation errors since theyinfer the resource usage of an application by treating it as
black-box. Since applications are responsible for managing their power settings in our approach, they can employ domain-
specific knowledge to better infer their resource needs. Forinstance, a power-aware video player can employ video-
specific information such as the frame size and the frame typeto determine frame decoding times (and an appropriate
CPU power setting). Such information is typically hard to infer within the operating system kernel. An intermediate
approach is to enable an application to provide useful hintsto the OS kernel (such as their periods [22]); our approach is
more radical since it puts the entire burden of power management on the application.

This paper presents Chameleon, our approach for application controlled DVFS with performance isolation. Chameleon
consists of three components: (i) acommon OS interface that can be used by power-aware applications to measure their CPU
demands and adjust their CPU speed settings, (ii) a modified kernelCPU scheduler that supports per-process CPU speed settings
and ensures performance isolation among tasks (the terms applications, tasks and processes are used interchangeably in this
paper), and (iii) aspeed adapter that maps these CPU speed settings to the nearest speed actually supported by the hardware.
In Chameleon, each power-aware application needs to employa model of its resource usage. The model is parameterized
by online measurements of the resource usage to determine anappropriate power setting at run-time. We present application
models for three open-source applications: (i) an MPEG-2 and MPEG-4 video decoder that is representative of DVD players
and commercial streaming systems, (ii) a H.261 and H.263-based video conferencing tool, and (iii) a web browser.

We have implemented Chameleon in the Linux kernel 2.4.20-9 and have evaluated its energy efficiency on a Sony Vaio laptop
equipped with Transmeta’s Crusoe TM5600-667 processor [20]. Our experiments compare Chameleon with three existing
OS-level DVFS approaches, namely PAST [21], PEAK [13] andAV Gn [12] and with LongRun, a hardware-based DVFS
approach. Our experiments with the above power-aware applications show that Chameleon can extract up to a 35% energy
savings when compared to LongRun and up to 50% savings when compared to OS-based DVFS approaches, without any
performance degradation to time-sensitive multimedia andinteractive applications. In case of the web browser, for instance, the
average power consumption of Chameleon is only0.03W higher than the lowest power setting of Transmeta’s CrusoeTM5600-
667 processor. Chameleon is also more effective at scheduling a mix of applications, since each application can use a custom
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power setting that is most appropriate to its needs—our experiments show that per-process power settings in Chameleon yield
31-50% energy savings over LongRun and OS approaches that use a single power setting for all applications.

The rest of this paper is organized as follows. Section 2 presents the design of Chameleon. Section 3 presents the design
of Chameleon-aware applications. Section 4 discusses implementation issues. Section 5 presents our experimental results, and
finally, Section 7 presents our conclusions.

2 Chameleon Design

The architecture of Chameleon consists of three key components (see Figure 1). The Chameleoncommon interface is used
by power-aware applications to query the kernel for statistics on resource usage. These OS-level statistics can be combined
with application domain knowledge to determine a desirableCPU power setting, which is then conveyed to the OS kernel
via the common interface. Second, Chameleon implements a modified CPU scheduler that supports per-process CPU power
settings and application isolation. The modified schedulerconveys an application’s power settings to the underlying CPU at
context switch time. Further, an application can modify itspower settings at any time during its quantum via system calls. To
enforce protection, an application is never allowed to modify the settings of another application. Since an application’s power
settings take effectonly when it is scheduled, applications are isolated from one another and from malicious or misbehaving
applications. Kernel support for per-process power settings and application isolation does not require any modifications to the
CPU scheduling algorithm itself, and as a result, Chameleonis compatible with any scheduling algorithm. Third, Chameleon
implements a speed adaptor that maps application-specifiedpower settings to the nearest CPU speed actually supported by the
hardware. In particular, an application specifies the desired CPU speed (and thus, its power setting) as a fractionfi of the
maximum processor speed. The speed adapter maps this fraction to the nearest supported CPU speed; since different hardware
processors support different speeds, such an approach ensures portability across hardware.

While it is desirable for applications to manage their own energy needs to maximize power savings, it may not be feasible to
modify every single application to make it power-aware. Thus, legacy applications will coexist with power-aware applications in
Chameleon. For such applications, Chameleon reverts to a hardware DVFS technique—whenever a power-unaware application
is scheduled on the CPU, Chameleon dynamically switches to asystem-controlled DVFS technique (our current prototype uses
LongRun [10]). The hardware DVFS technique is disabled whena power-aware application is scheduled for execution. Sucha
policy enables legacy applications to extract some power savings while permitting power-aware applications to maximize these
savings.
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Figure 1: The Chameleon Architecture.

3 Modeling Energy Usage

Chameleon puts the burden of power management on individualapplications, and consequently, each power-aware application
needs a model of its resource usage to determine its power settings at run-time. Such a model predicts future resource needs
and determines a power setting that is sufficient to meet those needs. In this section, we present models for three different
applications, namely a video player, a video conferencing tool, and a web browser.
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3.1 MPEG Video Decoder

We considermplayer [18] a software video decoder that supports both MPEG-2 and MPEG-4 playback. Note that, MPEG-2
is widely used for DVD playback, while MPEG-4 is used by commercial streaming systems such as QuickTime and Windows
Media; a power-aware version ofmplayer is representative of these applications. In general, videoplayback is a periodic
application where frames are decoded and displayed at the playback rate. The playback quality is maximized so long as each
frame is decoded and displayed prior to its playback deadline. Since the decoding of a frame significantly before its playback
deadline does not increase the perceived video quality, a power-aware version of a video player should vary the CPU speedso
that each frame is decoded exactly when it deadline expires.To illustrate, consider a 30 frames/s video where a frame needs
to be decoded every 33 ms. If the decode time of a particular frame is estimated to be 16ms at full processor speed, the speed
can be effectively halved (and the decode time doubled) without impacting the 33ms deadline. More precisely, in the absence of
other applications, the optimal (slowest) CPU speedfopt to decode a frame is given as

fopt =
dmax

τ
fmax (1)

wherefmax is the maximum processor speed,dmax is the decode time of the frame at full processor speed, andτ is the playback
interval. While the parametersfmax andτ are known for a given processor and a given video, respectively, the frame decode
timedmax needs to be determined for each individual frame. Further, Equation 1 will need to consider the impact of time sharing
due to other applications in the system.

3.1.1 Predicting Frame Decode Times

We encoded a number of MPEG-2 and MPEG-4 video clips at different bit rates and different spatial resolutions. These video
clips were decoded by an instrumentedmplayer that measured and logged the decode time of each frame at fullprocessor speed.
We analyzed the resulting traces by studying the first order and second order statistics of the decode times and frame sizes for
each frame type (i.e.,I, P , B) as follows.

Let x andy be two random variables corresponding to the frame size and the frame decoding time, respectively; and letµx

andσx be the mean and standard deviation of the frame size, respectively; and also letµy andσy be the mean and standard
deviation of the frame decoding time, respectively. Thus the theoretical correlation coefficientρxy betweenx andy is given by:

ρxy =
E[(x − µx)(y − µy)]

σxσy
(2)

Now assume we have obtainedN pairs ofx andy values. The correlation coefficientρxy may be estimated from theN pairs
data by:

rxy =
ΣN

i=1(xi − x)(yi − y)

[ΣN
i=1

(xi − x)2ΣN
i=1

(yi − y)2]1/2
(3)

For a particular function ofrxy given by:

w =
1

2
[
1 + rxy

1 − rxy
] (4)

From [3], the random variablew has an approximately normal distribution with a mean and variance of

µw =
1

2
[
1 + ρxy

1 − ρxy
] (5)

σ2
w =

1

N − 3
(6)

As shown in [3], the sampling distribution ofw givenρxy = 0 is normal with a mean ofµw = 0 and a variance ofσ2
w = 1

N−3
.

Hence the acceptance region of the hypothesis of zero correlation at the 0.02 level of significance is given by:

−2.33 ≤
√

N − 3

2
ln[

1 + rxy

1 − rxy
] < 2.33 (7)

If
√

N − 3w falls outside the acceptance region of zero correlation, hence, there is reason to believe that significant correlation
exists betweenx andy.
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Resolution Frame Type Bit-Rate(kbps) rxy

√
N − 3w

352x288 I 1120.0 0.8956 111.7280
352x288 P 1120.0 0.3443 47.7959
352x288 B 1120.0 0.1808 39.7774

Table 1: Correlation Coefficients of MPEG 1/2 Standard Videos

Resolution Frame Type Bit-Rate(kbps) rxy

√
N − 3w

352x240 I 630.5 0.9045 42.0324
352x240 P 630.5 0.7664 492.1438
512x288 I 705.5 0.8201 40.9122
512x288 P 705.5 0.8084 455.9816
576x256 I 775.4 0.9162 88.7301
576x256 P 775.4 0.7667 389.0298
640x272 I 1290.9 0.8824 48.3261
640x272 P 1290.9 0.6464 216.6028
640x352 I 679.7 0.6861 50.9520
640x352 P 679.7 0.8217 486.8483

Table 2: Correlation Coefficients of MPEG 4 Standard Videos

Our correlation coefficient results of the above correlation analysis in Table 1 and 2 show that there is a piece-wise linear
relationship between the decode times and the frame sizes for each frame type. These results corroborate the findings of aprior
study on MPEG-2 where an approximate linear relationship between frame size and decode times was observed [1].

Using these insights, we constructed a predictor that uses the type and size of each frame to compute its decode time. A
key feature of our predictor is that the prediction model is parameterized at run-time to determine the slope and intercept of the
piece-wise linear function. To do so, the video decoder stores the observed decode times of the previousn frames, scales these
values to the full-speed decode time (since the observed decode times may be at slower CPU speeds), and uses these values
to periodically recompute the slopes and the intercepts of the piece-wise linear predictor by using linear regression method.
This not only enables the predictor to account for differences across video clips (e.g., different bit rates require different linear
predictors), it also accounts for variations within a video(e.g., slow moving scenes versus fast moving scenes in a video). The
parameterized predictor is then used to estimate the decodetime of each frame at full processor speed.

For instance, given window sizen, suppose we have the lastn I frame’s size and decoding time, then we start to decode a new
I frame and we already know the size of this new frame. Letsi anddi denote the frame size and the full-speed decoding time
of theith frame, respectively,sn+1 denote the frame size of the new I frame andd̂n+1 denote the predicted full-speed decoding
time of it. Thus thed̂n+1 is given by Equation 8:

s̄ =

∑n
i=1

si

n

d̄ =

∑n
i=1

di

n

b =

∑n
i=1

(si − s̄)di
∑n

i=1
(si − s̄)2

(8)

a = d̄ − bs̄

d̂n+1 = a + bsn+1

In the predictor shown in Equation 8, the window sizen has great impact on the performance of the predictor, thus choosing
an appropriaten is important issue in the design of such an linear regressionpredictor. To do this, we applied the linear
regression predictor to our collected traces by varying thewindow sizen from 5 to 50, and then measured the accuracy of the
linear regression predictor with different window sizes. The accuracy of the linear regression predictor (Equation 8)is evaluated
by theCumulative Distribution Function (CDF) of its absolute error and the CDF of its relative error.Under the same error
level, the larger the CDF, the more accurate the predictor. As shown in Figure 2 to 6, the linear regression predictor achieves
the best accuracy in most cases when the window sizen is less than10, and the accuracy level has small variation in that area.
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Therefore, we choose the window size8 for our predictor since the division operations of Equation8 can then transformed to
the shift operations to reduce the cost.
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Figure 2: Variation of the Accuracy of MPEG 1/2 Frame Decode Times Predictor under Resolution 352x288 with the Window
Size
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Figure 3: Variation of the Accuracy of MPEG 4 Frame Decode Times Predictor under Resolution 352x240 with the Window
Size

Figure 7, 8, 9, 10 and 11 present the accuracy of our predictors for all three different frame types (i.e, I, P, B) with window
size8. Our experiments show that our MPEG frame decode times predictor can achieve very good prediction accuracy for all
frame types. Figure 7 measures the accuracy of our predictorfor MPEG 1/2 movie, and Figure 8 to 11 measure the accuracy of
our predictor for MPEG 4 movies. Since MPEG 4 standard only has two frame types (I and P), Figure 8 to 11 does not have the
results for B type frame present. Our results show that: (i) for the decode time of I type frame, the absolute error of over95%
prediction is less than1ms except that the absolute error of95% prediction under resolution 640x352 is less than2ms, and the
relative error of over92% prediction is less than5%; (ii) for the decode time of P type frame, the absolute error of over 92%
prediction is less than1ms, and the relative error of over90% prediction is less than10%; (iii) for the decode time of B type
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Figure 4: Variation of the Accuracy of MPEG 4 Frame Decode Times Predictor under Resolution 512x288 with the Window
Size

frame, the absolute error of over95% prediction is less than1ms, and the relative error of over88% prediction is less than10%.

3.1.2 Speed Setting Strategy

Suppose that predicted decode time of the next frame at full processor speed iŝdmax. Then the predicted optimal processor
speed for decoding the next frame is given as

fpredict =

{

min( d̂max·fmax

deadline−delay
, fmax) if deadline > delay

fmax if deadline ≤ delay
(9)

wherefmax denotes the full processor speed,deadline is the relative deadline for decoding the frame and is given by Equation
10, anddelay is the accumulated slack and is given by Equation 11. The deadline for decoding a frame is the actual time left
until its playback instant

deadline = max(T − current, ǫ) (10)

whereT denotes the playback instant,current denotes the current time, andǫ is a small positive constant. We take the maximum
of T − current andǫ to avoid negative values of the deadline, in which casefpredict should be set tofmax.

Since the predictor is not perfect, the actual decode time can be smaller or greater than the predicted decode time, resulting
in positive or negative slack for decoding future frames. The parameterdelay estimates this slack (which is also the error in
the predictions). The computed deadline is then reduced by this amount to correct for the error in Equation 9. The accumulated
slack is computed as

delay =

{

max(dlast − deadlinelast, 0) if delay ≤ 0
delay + (dlast − deadlinelast) if delay > 0

(11)

wheredlast anddeadlinelast denote the decoding time and relative deadline of the previous frame, respectively. Note that, the
use of the current time in thedeadline computation and the computation of the slack allows the predictor to account for the time
spent on scheduling other processes in a time-shared system.

In a real implementation, the Chameleon speed adaptor maps the computedfpredict to the closest supported CPU speed that
is no less than the requested speed.

3.2 Video Conferencing Tool

Video conferencing has become a popular multimedia application for business and personal use. Most instant messaging clients
today support some form of “video chats”. Business use of video conferencing has increased due to falling network bandwidth
prices and better provisioned networks. Many video conferencing applications are based on the H.26x family of compression
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Figure 5: Variation of the Accuracy of MPEG 4 Frame Decode Times Predictor under Resolution 640x272 with the Window
Size

standards (specifically, H.261, H.263 and H.264). In a typical application such asgnomemeeting, the sender captures images at a
constant rate using a capture device such as a web camera, encodes these images into frames as specified by the H.26x standard,
and transmits encoded frames to a receiver over an IP network. Due to the limit on the maximum packet size in IP, frames are
partitioned into packets prior to transmission; each packet can be independently decoded at the receiver without waiting for other
packets of that frame, thereby reducing latency—an important factor in conferencing applications.

The H.26x standard differs significantly from MPEG in the techniques used for encoding and transmitting frames. In par-
ticular, although images are captured at a constant rate at the sender, the H.26x standard only requires thedifference between
successive images to be sent to the receiver. If there is no difference between successive images (due to lack of motion),then
no data needs to be sent. Consequently, frames (and thus, packets) arriveaperiodically at the receiver, and the frame sizes can
vary significantly across successive frames depending on the amount of motion. As a result, the design of a power-aware H.26x
decoder is more complex than a power-aware MPEG video decoder. In particular, a power-aware video conferencing tool will
need to predict (i) interval between successive frames, andspecifically, the arrival time of the next frame, (ii) the size of each
frame in terms of the number of packets, and (iii) the decoding time of each packet. Next, we present techniques to predictthese
metrics for the H.261 standard.

3.2.1 Predicting the Frame Interval

As indicated above, the interval between successive framesis not fixed in H.261, and network conditions can further add to this
variability. Our experiments have shown that the amount of motion of the participants, rather than the network conditions, is the
dominant factor in the variability of the frame arrival times seen by the recipient. The greater the amount of motion, thegreater
the difference between successive images, and the larger isthe number of frames actually sent out.

To predict the arrival time of the next frame, we assume that the video conferencing application maintains a history of arrival
times of the previousn frames, yielding a time series of their values. We can then use a simple time series-based statistical
model to predict the next frame arrival time. We instrumented gnomemeeting to record the arrival times of frames and collected
traces of a number of video conferencing sessions with varying amounts of motion. Using these traces, we experimented with
a number of auto-regressive and moving average models such as AR(1), AR(2), AR(3), MA(1), and MA(2) to predict the next
frame arrival time [2]. Except for the above time series-based statistical models, we also experimented with two commonly used
models,mean which makes prediction by taking the mean of the values of last n samples, andlast in which the prediction is
exactly the value of last sample. Similar to Section 3.1.1, the accuracy of these predictors is also evaluated by the CDF of their
absolute error and the CDF of their relative error.

As shown in Figure 12 and 13, the second-order auto-regressive model (AR(2)) and the third-order auto-regressive model
(AR(3)) are the best two models, and they have similar performance. Figure 12 shows that for video conference with resolution
176x144: (i) over97% predictions of AR(2) and AR(3) have absolute error less than20ms; (ii) over90% predictions of AR(2)
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Figure 6: Variation of the Accuracy of MPEG 4 Frame Decode Times Predictor under Resolution 640x352 with the Window
Size

and AR(3) have relative error less than5%. Figure 13 shows that for video conference with resolution 352x288: (i) over90%
predictions of AR(2) and AR(3) have absolute error less than20ms; (ii) over95% predictions of AR(2) and AR(3) have relative
error less than10%. It means that AR(2) and AR(3) both are good candidates of frame interval predictor. Considering the
computational complexity of these two predictors, AR(2) isthe best choice. Consequently, we we devised a predictor based on
the AR(2) model to predict frame arrival times.

To understand how the AR(2) predictor works, consider a sequence of observations of the frame intervals:inter0, inter1,
inter2, ..., intern. Given this time series, we wish to predict the(n + 1)th frame interval. Letintern+1 denote the actual
interval and let ˆintern+1 denote the predicted interval.

The second-order autoregressive process AR(2) is defined as[2]:

˜intert = φ1
˜intert−1 + φ2

˜intert−2 + at (12)

whereat is some random variable with zero mean,φ1 +φ2 < 1, φ2 −φ1 < 1, and−1 < φ2 < 1. If intert has a non-zero mean
µ, then ˜intert = intert − µ, otherwise, ˜intert = intert.

Given such a process, anAR(2) predictor estimates the mean ofintert, the parameterφ1 andφ2 of the model and then
predicts the next value based on these estimates. Letµ̂, φ̂1 andφ̂2 denote the estimated mean, the estimated value ofφ1 andφ2,
respectively. The prediction ˆintern+1 is given by:

ˆintern+1 = µ̂ + φ̂1(intern − µ̂) + φ̂2(intern−1 − µ̂) (13)

Thus, estimation of the mean̂µ, the parameter̂φ1, and the parameter̂φ2 are important issues in the design of an AR(2) predictor.
Our predictor estimates these three parameters dynamically using recent observations. Consider a window that hold themost

recentm observations of frame intervals,m ≤ n. The estimate of the mean̂µ is given by:

µ̂ =

∑m−1

j=0
intern−j

m
(14)

The estimate of̂φ1 andφ̂2 are given by:

φ̂1 =
r1(1 − r2)

1 − r2
1

φ̂2 =
r2 − r2

1

1 − r2
1

(15)
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Figure 7: The Accuracy of MPEG 1/2 Frame Decode Times Predictor underResolution 352x288

where

r1 =

∑m−1

j=0
(intern−j − µ̂)(intern−1−j − µ̂)
∑m−1

j=0
(intern−j − µ̂)2

r2 =

∑m−1

j=0
(intern−j − µ̂)(intern−2−j − µ̂)
∑m−1

j=0
(intern−j − µ̂)2

(16)

3.2.2 Predicting the Number of Packets in a Frame

Our analysis of the gnomemeeting video conferencing tracesshowed that the number of packets in a frame, and thus the frame
size, is governed by the amount of human motion in each frame.Due to the continuous nature of human motion, we found the
size of the current frame to be the best predictor of the size of the next frame (the current frame size was found to be a better
predictor than other metrics such as the mean size of the previousk frames). As shown in Figure 14 and 15, thelast predictor
which uses the number of packets in the current frame as the the number of packets in the next frame yields a good balance
between prediction accuracy and computational complexity: (i) the absolute error of over95% prediction for QCIF is less than
1; (ii) the absolute error of over90% prediction for QCIF is less than2. Consequently, we use a simple predictor that sets the
estimated number of packets in the next frame to that in the current frame.

3.2.3 Predicting the Packet Decode Time

The low level compression mechanisms in H.261 share many common ideas with MPEG. Therefore, we applied the same
correlation coefficients analysis as we did in Section 3.1.1the collected traces of the packet size and the packet decoding time of
H.261. Not surprisingly, we observed a similar piece-wise linear relationship between the packet size and the packet decoding
time for a given frame type (see Table 3). Consequently, we use a similar predictor to the one in Section 3.1.1 to estimate the
decoding time of a packet, and the equations of this predictor is exactly the equations used in Equation 8 except that the size of
frames is replaced by the size of packets.

Resolution rxy

√
N − 3w

176x144 0.3774 36.6280
352x288 0.3176 46.4444

Table 3: Correlation Coefficients of H.261 Standard

10
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Figure 8: The Accuracy of MPEG 4 Frame Decode Times Predictor under Resolution 352x240

As we did in Section 3.1.1, we also applied our linear-based predictor (denoted aslinear) to the traces of H.261 packets
decoding time and measured its accuracy by evaluating the CDF of its absolute error and relative error. Our experiments show
that our linear-based predictor of H.261 packet decoding time cannot achieve comparable accuracy to the linear-based predictor
of MPEG frame decoding time in terms of the CDF of relative error. Therefore, we additionally applied another predictormean,
which makes prediction by taking the mean of the values of last n samples, to our collected traces. Figure 16 and 17 show that:
(i) our linear-based predictorlinear outperformsmean predictor in both resolutions; (ii) more than95% predictions oflinear
have absolute error less than1.5ms.

We notice that both predictors do not perform well in terms ofthe CDF of relative error. Observed from Figure 18, the
decoding time of H.261 standard is small in most case, around90% less than3.0ms. So even absolute error1.5ms means a
relative error larger than50% in most case, while a prediction with1.5ms absolute error is a very good prediction to satisfy our
requirement. Therefore, we only evaluated the prediction accuracy of both predictors in terms of the CDF of absolute error. As
a consequence, we choose our linear-based predictorlinear as the H.261 packet decoding time predictor.

3.2.4 Speed Setting Strategy

Let p̂ denote the estimated number of packets in the current frame,and let ˆinter denote the predicted frame interval. Then the
CPU speedfj for decoding of thejth packet in the current frame is determined by scaling its full-speed decode timêdj by the
inter-packet arrival time. That is,

fj =







min(fmax,
d̂j ·fmax

j× ˆinter

p̂
−elapsej

) if j× ˆinter

p̂
> elapsej

fmax if j× ˆinter

p̂
≤ elapsej

(17)

wherefmax denotes maximum CPU speed, andelapsej denotes the time elapsed since the arrival of the first packetof the
current frame.

In the event the actual number of packets in the frame exceedsthe estimated valuêp, the CPU speed setting of subsequent
packets is computed as

fj =

{

min(fmax,
d̂j ·fmax

ˆinter−elapsej

) if elapsej < ˆinter

fmax if elapsej ≥ ˆinter
(18)

wherej > p̂.
In a real implementation, the computedfj is mapped by the speed adapter to the closest available speedthat is no smaller

than the requested speed.

11
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Figure 9: The Accuracy of MPEG 4 Frame Decode Times Predictor under Resolution 512x288

3.3 Web Browser

A web browser is an event-driven interactive application. Upon an event such as a mouse click or network data arrival, theweb
browser needs to do some work to process the event. For example, when the user clicks on a link, the browser needs to construct
and send out a HTTP request; when data arrives from the remoteserver, it needs to parse and display the incoming data; and it
needs to redraw its window once thedraw event arrives. Except for the network delay which is out of the control of the web
browser, the speed at which these events are processed by webbrowser greatly impacts the user’s experience. The faster the
speed, the better the user’s experience. However, studies have shown that there exists a human perception threshold under which
events appear to happen instantaneously [4]. Thus, completing these events any faster would not have any perceptible impact on
the user. While the exact value of the perception threshold isdependent on the user and the type of task being accomplished, a
value of50ms is commonly used [4, 15, 8, 9]. We also use this perception threshold in our work.

Our strategy for achieving energy savings while still maintaining good interactive performance relies on a technique referred
to asgradual processor acceleration (GPA). Our gradual processor acceleration technique works as follows.

On the arrival of an event, the web browser is configured to rununder at a low CPU frequency, and a timer is set. If the
processing of the event finishes before the timer expires, then browser simply waits for the next event. Otherwise, it increases
the CPU speed by some amount and sets another timer. Thus, theprocessor is gradually accelerated until either the event is
processed or the maximum CPU speed is reached. In order to ensure good interactive performance, the maximum CPU speed is
always used when the event processing time exceeds the perception threshold.

Suppose we haven timers, which have valuest1, t2, ..., tn, and
∑n

i=1
ti = 50ms. At theith step, the processor runs at

speedfi, which is expressed as a percentage of the maximum availablespeed. Therefore, the full speed execution time over
the interval[t1, tn]—the time it would have taken to process this work at full processor speed—is given as

∑n
i=1

fiti. If the
actual full-speed processing time of the event is smaller than this value, the event finishes before the50ms perception threshold,
and thus the user does not perceive any performance degradation. For any event requiring more than this amount of full speed
execution time, the maximum possible performance degradation under our strategy is given by:

degrade = 50 −
n

∑

i=1

fiti (19)

since the processor will run at full speed once the executiontime exceeds the perception threshold.
Given this expression, the maximum possible performance degradation can be bound by any specific value by carefully

choosing the CPU frequencies and timer values. For example,suppose that we have five timers with values30ms,5ms,5ms,
5ms, and5ms. Suppose the processor speeds during these timer intervals is is45%, 60%, 80%, 90%, and100% of the maximum
speed, from the first timer to the last timer respectively. Then, from Equation 19, the maximum possible performance degradation
for an event is20ms. This is the maximum user-perceived slowdown for any event that requires more than50ms of processing

12
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Figure 10: The Accuracy of MPEG 4 Frame Decode Times Predictor under Resolution 640x272

time.

4 Implementation of Chameleon

We have implemented Chameleon in the Linux kernel and have implemented three power-aware applications to demonstrate its
effectiveness. Our implementation of Chameleon runs on a Sony Vaio PCG-V1CPK laptop with Transmeta Crusoe TM5600-
667 processor [20]. The Transmeta TM5600 processor supports five discrete frequency and voltage levels (see Table 4) and
implements theLongRun [10] technology in hardware to dynamically vary the CPU frequency based on the observed system-
wide CPU utilization. LongRun varies the CPU frequency between a user-specified maximum and minimum values—these
values can be set by users by writing to two machine special registers (MSR). By default, these values are set to300 MHZ
and677 MHz, enabling the full range of voltage scaling. LongRun canbe disabled by setting the minimum and maximum
register values to the same frequency (e.g., setting both to533 MHz does not allow any leeway in changing the CPU frequency,
effectively disabling LongRun). This feature can be used toimplement voltage scaling insoftware—the power-aware application
can determine the desired frequency and set the two registers to this value.

Freq. (MHz) Voltage (V) Power (W)
300 1.2 1.30
400 1.225 1.90
533 1.35 3.00
600 1.5 4.20
667 1.6 5.30

Table 4: Characteristics of the TM5600-667 processor

Our prototype of Chameleon is implemented as a set of modulesand patches in the Linux kernel 2.4.20-9. Our prototype
includes the following components:

1. New system calls. We added two new system calls to implement the Chameleon common interface: (i)get-speed which
returns the current CPU speed, (ii)set-speed that sets the CPU speed of the calling process. We also modified the/proc
interface in Linux to report the full speed execution time and the per-process utilization in each quantum.

2. Per-Process CPU Speed Settings. We modified the Linux CPU scheduler to support per-process CPU speed settings.
The scheduler maintains the current CPU speed settings for each active process and conveys these settings to the CPU at
context switch time. Protection is enforced by allowing a process to only modify its own power settings and never those
of other processes.

13
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Figure 11: The Accuracy of MPEG 4 Frame Decode Times Predictor under Resolution 640x352

3. Speed Adapter. We derived a hardware-specific conversion table (see Table5) from off-line empirical experiments to
map CPU speed percentages to a corresponding CPU frequency.

CPU Speed PercentageFreq. (MHz)
[0%, 45%) 300
[45%, 60%) 400
[60%, 80%] 533
(80%, 90%] 600
(90%, 100%] 667

Table 5: Speed adapter mappings from the percentage CPU Speed to a CPU Frequency for the Transmeta TM5600.

4. Power-aware Applications: We extended themplayer [18] movie player, thegnomemeeting video conference suite [11],
and thedillo web browser [6] with the models presented in Sections 3.1, 3.2, and 3.3, respectively. Power-unaware
applications are handled by dynamically reverting to LongRun whenever such applications are scheduled; LongRun is
disabled whenever a power-aware application is scheduled.

5 Experimental Evaluation

We evaluated Chameleon on a Sony Vaio PCG-V1CPK laptop equipped with a Transmeta Crusoe processor and 128MB RAM.
The operating system is Red Hat Linux 9.0 with a modified version of Linux kernel 2.4.20-9. This section presents a summary
of our results.

To compare Chameleon with other DVFS approaches, we implemented three OS-based DVFS techniques proposed in the
literature: (i) PAST [21], (ii) PEAK [13], and (iii)AV Gn [12], all of which are interval-based system-wide DVFS techniques.
Our experiments involve running applications under six different configurations: (i) with DVFS disabled—the CPU alwaysruns
at the maximum speed (denoted as FULL), (ii) using the hardwired LongRun technology, (iii) using PAST, (iv) using PEAK,
(v) usingAV Gn, and (vi) using Chameleon (where LongRun is disabled for power-aware applications but enabled for legacy
applications).

The energy consumption of the processor during an intervalT is computed as

energy =
n

∑

i=1

piti (20)

14
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Figure 12: The Comparisons among Frame Interval Predictors for QCIF 176x144 with Window Size 15

wheren is the number of available frequency/voltage combinationson the processor,pi denotes the power consumption of the
processor when running at theith frequency/voltage combination, andti represents the time spent at theith frequency/voltage
combination during the intervalT . We modify the Linux kernel to record the energy consumptionof the TM5600 processor using
Equation 20 and Table 4. Given the energy consumption of the processor during an intervalT , the average power consumption
of the processor during this interval is computed as

poweravg =
energy

T
(21)

5.1 Video Decoder

We encoded ten DVD movies at different bit-rates and resolutions using Divx MPEG2/MPEG4 video codec and MP3 audio
codec The characteristics of these movies are listed in Table 6. The bit-rates are depicted in the form(a + b)Kbps, wherea is
the video andb is the audio bit-rate. We recorded the energy consumed by theprocessor during playback of these movies at full
speed, with LongRun, with Chameleon, with PAST, with PEAK, and withAV Gn.

Res. Length Frames Bit-Rate(Kbps)
Movie 1 640x272 3360s 80387 1290.9 + 179.2
Movie 2 640x272 612s 14577 757.2 + 128.0
Movie 3 720x448 1742s 43500 1272.1 + 96.0
Movie 4 640x352 602s 15003 861.9 + 128.0
Movie 5 640x352 1755s 42040 2456.9 + 192.0
Movie 6 640x480 2394s 57355 1674.6 + 384.0
Movie 7 640x352 7168s 179168 679.7 + 128.0
Movie 8 640x480 2368s 56733 1877.6 + 384.0
Movie 9 640x280 5523s 132375 911.1 + 128.0
Movie 10 720x448 1722s 43004 1250.6 + 96.0

Table 6: Characteristics of MPEG 4 Videos

As shown in Figure 19, PEAK always consumes the least processor energy among all the DVFS techniques. However,
it trades its energy savings with an unacceptably high performance degradation for time-sensitive multimedia and interactive
applications. For example, the results of the normalized execution time (normalized according to the length of movies)during
videos playback in Figure 20 show that the video decodings ofsix movies (Movie 3, 4, 5, 6, 8, 10) take extra12% to 53%
execution time, resulting in poor performance. Therefore,we omit PEAK in the rest of experimental evaluation.
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Figure 13: The Comparisons among Frame Interval Predictors for CIF 352x288 with Window Size 15

Our results in Figure 20 show that all the other five configurations, Chameleon, LongRun, PAST,AV Gn, and Full, handle
movie playback very well. The same playback quality is observed under these five configurations: identical execution times
which equal the length of the movies, identical frame rates,no dropped frames, and no user-noticeable delays. However,the
average CPU power consumption differs significantly acrossthe various configurations (see Figure 19). Figure 19 shows that:
(i) LongRun outperforms PAST andAV Gn in most cases; (ii) LongRun can achieve significant energy savings (from11.76%
to 62.19%) when compared to FULL; (iii) the Chameleon-awaremplayer can achieve an additional19.92% to 34.79% energy
savings when compared to LongRun.

Although there are no user-perceived playback problems (interms of dropped frames or playback freezes) under the five
configurations, we do observe variations in playback quality at the frame-level.mplayer provides statistical measurements of
late frames—the number of frames that are behind their deadline by more than20% of the frame interval (this small inter-
frame jitter is typically not perceptible at the user-level). As shown in Figure 21, the number of late frames in Chameleon is
mostly comparable to PAST andAV Gn and typically better than LongRun (while consuming the least energy). FULL has the
least—although not zero—late frames at the expense of the the highest energy consumption. The number of late frames is small
(0.2− 5.3%) in all the five configurations. We also notice that the difference between the late frames percentages of Chameleon
and Full is less than0.5% in all cases, therefore Chameleon has almost the same performance as FULL while consuming much
less energy (41.71% to 71.46% less).

5.2 Video Conference Tool

To ensure repeatable and comparable experiments with the video conferencing tool, we encoded several video clips with varying
degrees of motion. We played these clips on a PC, with the video camera of the sender PC pointing to this video playback. The
sender encodes these images and transmits them to the power-aware receiver over a lightly loaded network. This ensures afair
comparison across the various DVFS techniques and enables us to carefully control the amount of motion in each session.

We ran our video conference experiments under two resolutions, QCIF (176x144) and CIF (352x288), for all five configura-
tions. In our experiments, all five configuration handle the video conference very well. The same quality is observed under all
configurations: identical execution times and no deadline misses (i.e., the decoding of each packet completes before the arrival
of the next packet). Our results, shown in Figure 22, show that LongRun achieves significant energy savings (from20.75%
to 69.25%) when compared to FULL. Chameleon-awaregnomemeeting achieves an additional11 − 34% energy savings when
compared to LongRun, while PAST andAV Gn are worse than LongRun.

5.3 Web Browser

To eliminate the impact of variable network delays, our experiments with the web browser consisted of a client requesting a
sequence of web pages from a web server over a local area network; the requested web pages consist of actual web content that
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Figure 14: The Accuracy of H.261 Packets per Frame Predictor under Resolution 176x144

was saved from a variety of popular web sites. Each experiment consists of a sequence of requests to these web pages with
a uniformly distributed “think-time” between successive requests. The experiments differ in the requested web pages and the
chosen think times; each experiment is repeated under the five configurations, and we measure the mean power consumption
for each experiment. Our results, depicted in Table 7, show that LongRun consumes a factor of three less power than FULL.
Chameleon-awaredillo andAV Gn are able to extract additional10.27% and5.41% energy savings when compared to LongRun,
respectively, while PAST are worse than LongRun. We also note that the average power consumption under Chameleon is only
0.03W higher than the power consumption at the slowest CPU speed (300MHz). Further, most events finish in Chameleon
without any performance degradation, and a few long events are slowed down by at most 20ms.

Chameleon LongRun PAST AV Gn FULL
AVG. Power 1.33W 1.48W 1.88W 1.40W 5.30W

Table 7: Average Power Consumption for Web Browsing.

5.4 Concurrent Applications

In Section 1, we hypothesized that the use of per-process power settings is better than a single system-wide setting, since it
allows each application to flexibly optimize their energy consumption. To experimentally verify this hypothesis, we measure the
power usage when running concurrent applications under thefive configurations. We first run the video decoder and the web
browser concurrently and then the video conferencing tool with the browser.

Table 8 shows the average CPU power consumption when runningthe video decoder and the web browser concurrently. Note
that, LongRun, PAST andAV Gn determine a single system-wide setting, which is typicallyinfluenced by the most compute-
intensive application in the system (in this case, the videodecoder). Chameleon uses different application-computedsettings for
the two applications, and consequently, incurs the least power consumption of the five configurations. The energy savings range
from 25-31% when compared to LongRun, which itself extractsa factor of 1.6-2 reduction when compared to FULL.

Chameleon LongRun PAST AV Gn FULL
Movie 2 1.75W 2.33W 3.32W 3.52W 5.3W
Movie 4 2.25W 3.27W 3.98W 4.42W 5.3W

Table 8: Average CPU Power Consumption during Video Decoding and Web Browsing.

Table 9 shows the average CPU power consumption when runningthe video conferencing tool and the web browser concur-
rently. Like in the previous scenario, Chameleon is able to extract the maximum energy savings, which is 15-31% lower than
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Figure 15: The Accuracy of H.261 Packets per Frame Predictor under Resolution 352x288

QCIF CIF
Chameleon LongRun PAST AV Gn FULL Chameleon LongRun PAST AV Gn FULL

Conference 1 1.51W 1.79W 2.58W 2.67W 5.30W 2.91W 4.39W 4.31W 4.53W 5.30W
Conference 2 1.53W 1.80W 2.60W 2.71W 5.30W 2.93W 4.31W 4.24W 4.55W 5.30W

Table 9: Average CPU Power Consumption during Video Conferencing and Web Browsing.

than LongRun. PAST yields worse performance than LongRun;AV Gn yields worse performance than LongRun under QCIF,
while it yields at most1.82% better performance than LongRun under CIF.

5.5 Overhead

We evaluate Chameleon’s overhead by measuring the cost for prediction methods and DVFS. We measure cost in CPU cycles,
rather than time, since the elapsed time for an operation (e.g., an invocation of frame decode time predictor) depends onthe
speed, while the number of consumed cycles does not change substantially with the speed. We get the number of CPU cycles
by reading the special time-stamp register of the processorbefore and after these operations, prediction methods and DVFS, and
count the elapsed CPU cycles during them.

First, we evaluate the cost for the prediction methods in Table 10. To do this, we ran the prediction methods proposed in
Section 3, and measure the elapsed CPU cycles for each prediction method. Table 10 shows that these predictor methods take
less than2800 CPU cycles (about9.3 µs under300 MHz and4.2 µs under667 MHz). This overhead is low and negligible
relative to multimedia execution, since the decode time of one MPEG frame is about5ms to40ms and the decode time of one
H.26x packet is about1ms to7ms under667 MHz. It means that these prediction methods only incur about0.0105% to 0.42%
overhead.

MPEG Frame Decode Time Predictor 2738
Video Conferencing Frame Interval Predictor 2560

Video Conferencing The Number of Packets in a Frame68
Video Conferencing Packet Decode Time Predictor 2731

Table 10: Cost of Prediction Methods (in CPU cycles).

Finally, we measure the cost of voltage and frequency scaling. To do this, we adjusted the processor from one frequency to
another frequency, and measure the number of cycles for eachchange. The results in Table 11 show that the CPU can change
speed within1125 cycles (about3.75 µs under300 MHz and1.69 µs under667 MHz). It means that the voltage and frequency
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Figure 16: The Accuracy of H.261 Packet Decode Times Predictor under Resolution 176x144

to frequency (MHz)
300 400 533 600 667

300 1101 1099 1086 1066
from 400 1125 1095 1086 1066

frequency 533 1117 1104 1073 1066
(MHz) 600 1125 1101 1092 1066

667 1117 1101 1088 1077

Table 11: Cost of Voltage and Frequency Scaling (in CPU cycles).

scaling only incurs tiny overhead.

6 Related Work

Recently, application aware/directed/controlled power management for processors has received increasing researchattention and
a variety of techniques have been proposed. Most of these techniques [5, 16, 22, 19, 17, 29] utilize the dynamic voltage and
frequency scaling technique (DVFS) of processors for energy savings, while several other techniques [26, 25, 28] utilize the
application/middleware based adaptation for energy savings of processors.

For instance, at the application/middleware based adaptation, Shenoy [28] and Tamai [25] both suggest performing power
friendly proxy based video transformations to reduce videoquality (i.e. bit-rate, resolution, fps) for energy savings; Flinn [26]
utilizes Puppeteer [27], a component-based adaption system, to reduce document quality (i.e. picture resolution, color depth,
animation) for energy savings of office applications. The common features of these application/middleware based adaptation
techniques are: (i) the amount of to-do work of applicationsis reduced, for example, the video quality in [28, 25] and the
document quality in [26] are reduced; (ii) all of them utilize a remote proxy to reduce the amount of to-do work of applications;
(iii) all of them are designed to handle applications which request their data (i.e. video stream, audio stream) from remote servers
via network, therefore they are not suitable for applications which only use local data.

In contrast, the application aware/directed/controlled power management techniques [5, 16, 22, 19, 17, 29] which utilize
DVFS technique: (i) do not reduce the amount of to-do work of applications; (ii) do not require a remote proxy to transcode
data; (iii) not only handle applications which use remote data but also handle applications which only use local data. In[5,
16, 19, 17, 29], researchers proposed several different application-controlled DVFS techniques for video decoder. For instance,
Mesarina [17] proposed a offline algorithm to compute the order and voltage settings at which the appliance’s CPU decodes
the frames, reducing energy consumption without violatingtiming for buffering constraints. This technique requireseach video
being preprocessed offline by some server ahead of its energyefficient playback. While in [5, 16, 19, 29], several techniques were
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Figure 17: The Accuracy of H.261 Packet Decode Times Predictor under Resolution 352x288

proposed to online estimate the CPU demand of video decoding, thus eliminated the need of preprocessing videos offline. All
these techniques [5, 16, 19, 17, 29] only consider a single application, video decoder, and grant complete control of theprocessor
frequency and voltage settings to the video decoder. The power-aware video decoder can choose a system-wide voltage and
frequency setting based on its needs and typically ignores other applications in the system. As a result, the performance of other
applications can be significantly impacted when settings chosen by the power-aware video decoder do not satisfy their CPU
needs. The GRACE-OS project [22] proposed an application/OS cooperative approaches to achieve energy savings for periodic
multimedia applications via DVFS technique, and they provided performance isolation among applications. GRACE-OS isnot
a general purpose approach, they can only handle periodic multimedia applications but not aperiodic applications suchas web
browser.

An integrated power management approach was proposed in [23] to unify low level architectural optimizations (CPU, mem-
ory, register), OS power-saving mechanisms (Dynamic Voltage and Frequency Scaling) and adaptive middle techniques (admis-
sion control, optimal transcoding, network traffic regulation). In this technique, interaction parameters between the different
levels are identified and optimized to significantly reduce power consumption.

7 Summary and Conclusions

This paper proposed Chameleon, a new approach for power management in mobile processors. We argued that application know
best what their energy needs are and propose an approach thatputs the entire burden of power management on individual appli-
cations. The operating system only enforces protection andisolates applications from the power settings of other applications.
Chameleon consists of three components: (i) acommon interface that power-aware applications can use to measure their CPU
demands and adjust their CPU speed settings correspondingly, (ii) a modified kernel CPU scheduler that supports per-process
CPU speed setting to ensure performance isolation among applications, and (iii) aspeed adapter that maps these CPU speed
settings to the nearest speed actually supported by the hardware.

We implemented Chameleon in the Linux kernel and evaluated its energy efficiency for three time-sensitive applications,
namely a video decoder, a video conferencing tool and a web browser. Our results show that Chameleon can extract up to
34% energy savings when compared to LongRun and up to 50% savings when compared to recently proposed OS-based DVFS
techniques, while delivering comparable or better performance to time-sensitive applications. Chameleon is also more effective
at scheduling a mix of concurrent application with diverse energy needs. As part of future work, we are developing a power-
aware version of an Office application suite for Chameleon.

20



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

C
u

m
u

la
tiv

e
 D

is
tr

ib
u

tio
n

 F
u

n
ct

io
n

Decoding Time (ms)

The Cumulative Distribution Function of Decoding Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

C
u

m
u

la
tiv

e
 D

is
tr

ib
u

tio
n

 F
u

n
ct

io
n

Decoding Time (ms)

The Cumulative Distribution Function of Decoding Time

(a) 176x144 (b) 352x288
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Figure 21: Late Frames Percentage during Movie Playback
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Figure 22: Average Power Consumption for Video Conferencing.
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